今亮点!单位列向量可逆吗_单位列向量

1、三维单位列向量:e1{1,0,0},e2{0, 1, 0},e3 {0, 0 , 1}。

2、向量e1,e2,e3 的转置为被称为3维单位列向量。


(相关资料图)

3、三维单位列向量:e1{1,0,0}, e2{0, 1, 0}, e3 {0, 0 , 1}。

4、向量e1,e2,e3 的转置为被称为3维单位列向量。

5、用[ ]括起来就表示一个三维列向量。

6、在线性代数中,列向量是一个 n×1 的矩阵,即矩阵由一个含有n个元素的列所组成:列向量的转置是一个行向量,反之亦然。

7、所有的列向量的集合形成一个向量空间,它是所有行向量集合的对偶空间。

8、单位列向量,即向量的长度为1,其向量所有元素的平方和为1。

9、单位列向量,即向量的长度为1,其向量所有元素的平方和为1。

10、例如,X={0/1}就是一个单位列向量。

11、反之,若||x||=1,则X称为单位向量。

12、||X||表示n维向量X长度(或范数)。

13、扩展资料:已知三维单位列向量求矩阵的秩:m×n矩阵的秩最大为m和n中的较小者,表示为 min(m,n)。

14、有尽可能大的秩的矩阵被称为有满秩;类似的,否则矩阵是秩不足(或称为“欠秩”)的。

15、设A是一组向量,定义A的极大无关组中向量的个数为A的秩。

16、定义1. 在m*n矩阵A中,任意决定k行和k列交叉点上的元素构成A的一个k阶子矩阵,此子矩阵的行列式,称为A的一个k阶子式。

17、定义2. A=(aij)m×n的不为零的子式的最大阶数称为矩阵A的秩,记作rA,或rankA或R(A)。

18、特别规定零矩阵的秩为零。

19、显然rA≤min(m,n) 易得:若A中至少有一个r阶子式不等于零,且在r

20、由定义直接可得n阶可逆矩阵的秩为n,通常又将可逆矩阵称为满秩矩阵, det(A)≠0;不满秩矩阵就是奇异矩阵,det(A)=0。

21、由行列式的性质1(1.5[4])知,矩阵A的转置AT的秩与A的秩是一样的。

22、引理 设矩阵A=(aij)sxn的列秩等于A的列数n,则A的列秩,秩都等于n。

23、定理 矩阵的行秩,列秩,秩都相等。

24、定理 初等变换不改变矩阵的秩。

25、定理 矩阵的乘积的秩Rab<=min{Ra,Rb}。

26、当r(A)<=n-2时,最高阶非零子式的阶数<=n-2,任何n-1阶子式均为零,而伴随阵中的各元素就是n-1阶子式再加上个正负号,所以伴随阵为0矩阵。

27、当r(A)<=n-1时,最高阶非零子式的阶数<=n-1,所以n-1阶子式有可能不为零,所以伴随阵有可能非零(等号成立时伴随阵必为非零)。

28、秩为2,r(aa的转置)=1,特征值为0,0,1。

29、E-aa的转置矩阵的特征值为1,1,0。

30、0的重数位1,1≥n-r(E-aa)所以r(E-aa)≥2,所以秩为2。

31、参考资料来源:百度百科-矩阵的秩参考资料来源:百度百科-列向量。

本文为大家分享到这里,希望小伙伴们有帮助。

关键词:

今亮点!单位列向量可逆吗_单位列向量

1、三维单位列向量:e1{1,0,0},e2{0,1,0},e3{0,0,1}。2、向量e1,e2,e3的

互联网 2023-05-09

泰国国王携王后现身英王加冕礼,昔日宠妃诗妮娜下落引关注-焦点报道

泰国国王携王后现身英王加冕礼,昔日宠妃诗妮娜下落引关注---据泰国《国民报》5月7日报道,英王查尔斯三世

极目新闻 2023-05-09

这国总统:“强烈支持”中国立场-世界今热点

参考消息网5月9日报道据埃菲社报道,委内瑞拉总统马杜罗5月8日表示,委内瑞拉“坚决”支持中国和巴西就尽快

参考消息 2023-05-09

德讯午评:大盘震荡分化 券商板块集体爆发-环球通讯

德讯午评盘面解析券商发力市场跟风效应欠佳德讯证顾观点:大盘震荡分化券商板块集体爆发大盘震荡分化,沪指

德讯证顾 2023-05-09

西安公租房现在是摇号还是排号

西安公租房入住次序一、市本级公租房轮候非摇号+摇号摇号房源:报名后,住建局公布摇号名单,根据名单顺序

本地宝 2023-05-09

全球观热点:大众汽车软件部门CARIAD确认新任CEO

5月9日,据大众中国公告,大众集团旗下软件部门正式敲定了其新CEO人选。大众表示,自2023年6月1日起,宾利

DoNews快讯 2023-05-09

苹果下周将发布iOS16.5 RC版:动动嘴就能用Siri录屏

5月9日消息,有知情人士最新透露,苹果将在下周推送iOS16 5RC测试版本,一般来说与正式版并无二致。这是iOS

快科技 2023-05-09

今亮点!单位列向量可逆吗_单位列向量

1、三维单位列向量:e1{1,0,0},e2{0,1,0},e3{0,0,1}。2、向量e1,e2,e3的

互联网 2023-05-09

泰国国王携王后现身英王加冕礼,昔日宠妃诗妮娜下落引关注-焦点报道

泰国国王携王后现身英王加冕礼,昔日宠妃诗妮娜下落引关注---据泰国《国民报》5月7日报道,英王查尔斯三世

极目新闻 2023-05-09

这国总统:“强烈支持”中国立场-世界今热点

参考消息网5月9日报道据埃菲社报道,委内瑞拉总统马杜罗5月8日表示,委内瑞拉“坚决”支持中国和巴西就尽快

参考消息 2023-05-09

德讯午评:大盘震荡分化 券商板块集体爆发-环球通讯

德讯午评盘面解析券商发力市场跟风效应欠佳德讯证顾观点:大盘震荡分化券商板块集体爆发大盘震荡分化,沪指

德讯证顾 2023-05-09

西安公租房现在是摇号还是排号

西安公租房入住次序一、市本级公租房轮候非摇号+摇号摇号房源:报名后,住建局公布摇号名单,根据名单顺序

本地宝 2023-05-09

全球观热点:大众汽车软件部门CARIAD确认新任CEO

5月9日,据大众中国公告,大众集团旗下软件部门正式敲定了其新CEO人选。大众表示,自2023年6月1日起,宾利

DoNews快讯 2023-05-09

苹果下周将发布iOS16.5 RC版:动动嘴就能用Siri录屏

5月9日消息,有知情人士最新透露,苹果将在下周推送iOS16 5RC测试版本,一般来说与正式版并无二致。这是iOS

快科技 2023-05-09
x 广告
x 广告
x 广告

Copyright   2015-2022 东方仓储网版权所有  备案号:沪ICP备2020036824号-8   联系邮箱:562 66 29@qq.com